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Abstract

This report introduces the multislice method for modeling
the interaction between an electron and the atoms in the
specimen (electron-specimen interaction). The multislice
method is an approximation to the full quantum mechanical
model for this interaction. After introducing the theory,
we discuss how the multislice method is implemented and
integrated into TEM-simulator, a software for simulation
of Transmission Electron Microscope (TEM) images.




Referat

Implementation av multislice metoden for
simulering av
transmissionselektronmikroskopi

Denna rapport presenterar multislice-metoden som anvinds

till att modellera interaktionen mellan en elektron och ato-
merna i ett prov (elektron-prov-interaktion). Multislice-metoden
ar en approximation till den fullstandiga kvantmekaniska
modellen for denna interaktion. Efter inférandet av teorin
diskuterar vi hur multislice-metoden implementeras och in-
tegreras i TEM-simulator, en programvara for simulering

av Transmission Elektron Mikroskop (TEM) bilder.
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Chapter 1

Introduction

Since its introduction in the early 1600’s,
microscopy is an essential part of scientific
discovery, and especially so in life sciences.
From then on, there has been tremendous
technical and scientific development, e.g. in
the understanding of the wave/particle na-
ture of light, design of optics, and precision
engineering.

German physicist Ernst Abbe laid the
foundation of modern optics and established
a formula describing the resolving power of
a microscope in terms of the wavelength
and numerical aperture of the optical sys-
tem. Another breakthrough came with Frits
Zernike, a Dutch physicist, who invented the
phase contrast microscope. This permits
the study of sub-cellular structures without
the need to stain, hence one could now study
live cells. Zernike was awarded the Nobel
prize (physics) in 1953 for the discovery of
phase contrast microscopy.

The next major development for light
microscopy came with the discovery of green
fluorescent protein in a jellyfish species by
Osamu Shimomura in 1961. This marked
the beginning of fluorescence microscopy, an
optical microscopy modality that uses fluo-
rescence and phosphorescence instead of, or
in addition to, reflection and absorption of

Antony van Leeuwenhoek 1632-1723
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Figure 1.1. Evolution of resolution in microscopy.

light to study properties of organic or inorganic substances. Coupled with the devel-
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opment of high-resolution microscopes, fluorescence microscopy is now a mainstream
tool, bringing about a revolution for biological imaging, and having a profound im-
pact on the way research is being conducted in the life sciences.

Quest for higher resolution The notion of “image quality” is complex and
highly task dependent. Still, there are three components that often play a central
role in obtaining a good image: contrast, resolving power and magnification. Abbe’s
above mentioned formula made it clear that the resolving power is ultimately lim-
ited by the wavelength. The resolving power of light microscopy is therefore always
limited by the wavelength of visible light. One line of development to increase
the resolving power is to design microscopy that operates using light (photons)
with shorter wavelengths than visible light. The difficulty here is to design opti-
cal elements (lenses, mirrors, etc.) that can focus and reflect such x-ray photons.
There are now some prototype microscopes (soft x-ray microscopes) that operate
using electromagnetic waves in the x-ray regime, but this is still very much work in
progress.

Another line of development came with the quantum mechanical understanding
of the wave/particle duality of matter. In 1924, Louis de Broglie introduced the
concept of matter waves, later perfected by George Thomson and Clinton Davisson.
In 1926, Erwin Schroédinger published his by now famous equation, the Schrédinger
equation, modelling the evolution of matter waves. This opened up for the idea
of using electrons instead of light in microscopes. The benefit was that appropri-
ately accelerated electrons have a wavelength significantly lower than visible light.
Furthermore, since electrons are charged particles, they can be manipulated using
electric or magnetic fields. This makes it possible to design electron optical elements
that mimic the effect of optical lenses in light microscopy, see figure 1.2. Exploiting
these characteristics, in 1928 Ernst Ruska began working on electron lenses and in
1931 he built the first electron microscope at the University of Berlin. For this,
he was awarded the Nobel prize in physics in 1986. Below we provide a very brief
summary of the development of electron microscopy, see [14] for further details.

Following the discovery in 1931 by Ruska, further prototype electron microscope
were built, mostly for examining the effects on images of different magnetic and
electrostatic lenses. In 1933 the first electron microscope image of a biological
specimen was obtained by Marton using a three-lens electron microscope. Later,
in 1938 Hiller and Prebus they built an electron microscope with 6 nm resolution
and 40,000x magnification. In 1939 Siemens delivers the first commercial TEM
in serial production and other companies entered this contest soon after. Current
electron microscopes use a third magnetic lens and their resolution reaches 0.05 nm,
about 4000 times better than a typical light microscope. Alongside the technological
development, there has also been effort in developing mathematical models for the
different parts of electron microscopy imaging. Omne notable event is from 1957
when John Cowley and Alexander Moodie introduced the multislice method for
modeling electron-specimen interactions. Another is from 1965 when Karl-Joseph



Hanszen introduces contrast transfer function for modeling the effects of the lenses
in electron microscopes.

Specimen preparations have also been a central issue, especially for imaging bi-
ological specimens. The specimen needs to be solidified (fixation) and it also needs
to be protected from degradation caused by interaction with high energy electrons.
All this is to be done while preserving the structural integrity of the specimen. One
approach for fixation is low-temperature methods, introduced in 1951 to study bio-
logical membranes by Humberto Ferndndez-Moran. This method later evolved into
cryo-electron microscopy, which is widely used today for single particle microscopy.
In 1955, Cecil Hall published a study of the effect of various staining methods on
viruses, and described viral particles that were not positively stained by phospho-
tungstic acid, but appeared to be embedded in the dried reagent and displayed a
negative contrast. Since then, negative staining is used for increasing the contrast
and preserving the specimen.

Usage of electron microscopy Electron microscopes constitute an indispens-
able part of basic physics research, e.g. in material sciences TEMs are used to
characterise materials down to the atomic level. Electron microscopes are also ex-
tensively used in semiconductor industry.

Regarding life sciences, one of the main goals for present-day electron microscopy
is to look at the life processes within a cell at the molecular level. During recent
years electron microscopy has developed into a most useful tool to study macro-
molecules, molecular complexes and supramolecular assemblies in three dimensions
(3D electron microscopy). Three main techniques have been applied: electron crys-
tallography reviewed in [16, 11], single particle analysis reviewed in [9], and electron
tomography reviewed in [24, 26, 21]. Electron crystallography permits structural
analysis of macromolecules at or close to atomic resolution (0.4 nm or better). It
relies on the availability of 2D crystals and has proven especially suited for mem-
brane proteins. Larger biological complexes are preferably studied by single particle
analysis, which in favourable cases allows the molecular objects to be examined at
medium-resolution (1-2 nm). Notably, this resolution is good enough to permit
high-resolution structures of subunits or domains (usually obtained by X-ray crys-
tallography) to be fitted into the large structure at hand. This hybrid approach
may reveal the entire complex at close to atomic resolution. Finally, electron to-
mography can provide structural information at the molecular level in the context
of the cellular environment. Most importantly, small cells or sections through larger
cells or tissues can be studied as cryospecimens with a close-to-life preservation as
shown by [1, 21]. The resolution is presently limited to 4-5 nm but it seems rea-
sonable to reach higher resolution in a near future. The docking approach would
then be realistic, which will help identifying and characterising the molecular com-
plexes observed. It should finally be recalled that electron tomography examines
the supramolecular assemblies as individual objects. This is essential as within the
cell these complex structures are likely to be dynamic, changing conformation and
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subunit composition, and interacting, often transiently, with other molecular assem-
blies and cellular structures. Thus, often in conjunction with other methods such
as X-ray crystallography, mass spectrometry and single particle analysis, as shown
in [28, 32|, electron tomography is likely to be a most efficient tool to visualise
the supramolecular structures at work, which will help us understanding how they
operate within the cell at the molecular level.

Importance of an electron microscopy simulator Bearing in mind the above
mentioned striking development and the future expected potential of 3D electron
microscopy, it is anticipated that simulation of electron images will play an in-
creasingly important role in future molecularly oriented electron microscopy. A
molecular model (phantom), created by means of a phantom generator using infor-
mation stored in databases, generator can together with a simulator be used for in
silico electron microscopy imaging. Ideally, background variability and noise are also
properly incorporated into the image. Such a tool will be valuable for identifying
and characterising molecular objects in electron images of isolated objects as well
as of objects in the cellular environment. Furthermore, a simulator is also necessary
to easily and cost-efficiently test and evaluate the impact of new image processing
methods as well as novel data collection techniques and improved instrumentation.
Finally, a good simulator can be applied for educational purpose too, Since we can
produce the expected image from a specific specimen in a specific condition.



electron source

e first condenser lens
condenser &77 second condenser lens
aperture —

biecti Ef objective condenser lens
objective — minicondenser lens
K aperture a specimen (thin)
selected =~ objective imaging lens

—

XX

B

__ diffraction lens

area
O aperture

— intermediate lens

X

__ first projector lens
— second projector lens

PRI

X

objective lens

light beam
specimen
rojection
ghajmber
light source——

A N\

«—fluorescent screen

glectron beam

Figure 1.2. Upper image compares a light microscope to a TEM. Lower image
shows a coss-section of an electromagnetic lens and the passage of electrons through
its centre. Here, C is an electrical coil and P is the soft iron pole piece. Both figures
are provided by FEI company™ with permission.






Chapter 2

Physics of Image Formation

This chapter reviews models describing the different parts of a TEM and their
influence on the image formation. The image formation model naturally decomposes
into the following:

Electron source: Model for the source emitting the imaging electrons.

Electron-specimen interaction: Model for the interaction between the imaging
electrons and the atoms in the specimen.

Optics: Model for the TEM optics.
Detector: Model for the intensity formation and the TEM detector.

An important aspect in separately modelling such coupled phenomena is to make
sure that the models use consistent assumptions. The underlying physics is here
governed by quantum mechanics, where in the full model, both the imaging electron
and specimen are given by their wave functions. We will however only treat the
imaging electron quantum mechanically as a time harmonic wave:

U(x,t) = (x) exp(—iEt/h) where E is the energy of the electron.

The spatial variation 1): R? — C will be referred to as the electron wave.
In the subsections that follow, we provide a brief description of how each of the
above parts are modelled given the above setting.

2.1 Electron source

In TEM imaging, the electrons used for imaging (imaging electrons) are first dis-
pensed from an electron gun. Next, they pass through the condenser which is an
optical system that provides coherent illumination. This refers to the situation
when the imaging electrons can be described as monochromatic plane waves and
it is highly desirable for a variety of reasons. Furthermore, the TEM needs to be

7
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aligned in the sense that the imaging electrons travel along the TEM optical axis.
In summary, as the imaging electron leaves the condenser, it is modelled as

Uin(x,t) = exp(ikx - w)exp(—iEt/h)

where its direction of propagation w is parallel to the TEM optical axis.

The above simply states that imaging electrons are plane waves traveling along
the optical axis. In reality the illumination is of course not perfectly coherent. Par-
tial incoherence introduced by the illumination is frequently modelled phenomeno-
logically as a convolution with a rotation invariant filter that decreases exponentially
in Fourier space as frequencies grow (envelope functions), see, e.g., [8, 7, 34].

2.2 Electron-specimen interaction

After leaving the condenser, the imaging electron scatters against the atoms in the
specimen. The wave function for the scattered electron is given as the solution to
the Schrddinger equation

2
ihgtlll(ac,t) = [—;—mvz + V(@) e (w, 1),
In the above, V is the object function given by the interaction Hamiltonian, V2
denotes the Laplacian in R?, and m is the mass of the imaging electron.

One remark concerns how to account for relativistic effects. Under the condi-
tions in TEM imaging, it is clear that relativistic effects cannot be ignored. The
appropriate equation is the Dirac equation, but a computationally more feasible op-
tion is to use the Schrédinger equation with relativistically corrected electron mass
and wavelength [10]. Hence, m above is the relativistically corrected mass of the
electron.

2.2.1 Specimen model

The goal of the specimen model is to derive a computationally feasible model for
the interaction Hamiltonian V', henceforth called the object function. The most
common model is based on the isolated atom superposition approximation. Here,
one considers the atoms in the specimen as isolated from each other. For a specimen
where the nuclei of the j:th atoms is at «; and its atomic number is Z;, the object
function is given by

V(@)= > Vy (@ - =),

In the above, Vz: R3 — R is the potential of an isolated atom centred at the origin
with atomic number Z, so

1 A
VZ(;I; — xo) = [/ pZ(y) dy e
dmeg |Jr3 | — y| |z — x|

8
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with pz: R3 — R denoting the electron density function associated to the shell
electrons of the isolated atom.

The isolated atom consists of a positively charged nucleus surrounded by a
negatively charged electron cloud. The electric charges give rise to an electrostatic
potential at a point in space whose three-dimensional Fourier transform is the (elec-
tron) scattering factor of the atom. Numerical values of the latter for all atoms of
interest can be obtained from experiments and results are tabulated in the literature.
This values take into account both elastic electron-cloud scattering pz and elastic
nuclear scattering (from —eZ). Parameterisations can be found in [27, section 2.3
and appendix D].

The the isolated atom superposition approximation ignores the charge distribu-
tion associated with the chemical bonds. As atomic potentials provide the most
significant contribution to the scattering of incident electron, this computationally
feasible approximation provides an excellent starting point for initial interpretation
of high-energy electron diffraction experiments. As a final note, one can also add
an imaginary part to V' to account for effects due to inelastic scattering:

Vi)=Y Va, (@ - @) + V(@ - )

where ng‘,’s is the absorption potential used for modelling the decrease in the flux,
due to inelastic scattering, of the non-scattered and elastically scattered electrons
[29].

2.2.2 Approximations

An issue related to calculating the scattered electron wave by solving the Schrodinger
equation is that this is computationally intractable. Due to the small wavelength
of the imaging electron, standard techniques from numerical analysis, like the finite
element method, are out of the question for calculating the scattered electron wave,
this even in cases when the specimen is very thin (say not more than 50 nm thick).

One option is to look for various approximations. One approximation is to
assume that the electron wave essentially only undergoes a phase shift as it scatters
against the specimen, which brings us to phase contrast imaging. It is a reasonable
assumption for thin weakly scattering specimens and the amplitude term of the
scattered wave

Vse(T) = 7(x)in(x)

where v, is the amplitude term of the incoming wave and the phase shift is given
by
me

0
T(x) := exp(za /_oo V(e + sw) ds) with o := =

Note that V' above is the complex-valued object function that models the influ-
ence of the specimen. In the weak phase approximation one makes one further
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approximation, namely to take the Taylor expansion of the exponential in 7:
0
Vse(x) = 1+ ia/ V(x + sw) ds.
—0oQ

Hence, the projection of the object function along the propagation axis is enough
for calculating the phase shift of the incoming electron wave. This gives us a linear
relation between the object function and the scattered wave (note that in the initial
model, the scattered electron wave depends non-linearly on the object function).
Further details are given in section 3.1.

2.2.3 The multislice method

In thicker specimens there is diffraction along the propagation direction of the spec-
imen and the effect of the object function at each point in the specimen is not
independent from other points. Hence, contributions to the scattered electron can-
not be added independently, so a linear model like the weak phase object model
does not hold.

A more accurate model accounting for the above phenomena should refer to the
physics of electrodynamics which describes the behaviour of a high energy electron
scattering against atoms. One of the first attempts for this kind of electron-specimen
modelling was made for crystallised specimens [4]. The approach, which later came
to be known as the multislice method, was refined and some of its properties as an
approximation method were studied in [13]. In the next chapter we will discuss this
approximation in more detail.

2.3 Optics

After scattering against the specimen, the imaging electron passes through a number
of magnetic lenses before reaching the detector. These lenses add some artefacts to
the wave-function, e.g., aberrations and astigmatism. A common model is to assume
that the optics is linear and translation invariant, in which case the influence of the
optics can be modelled through a 2D convolution in the plane orthogonal to the
optical axis [6, 15, 22, 33, 17]. The kernel for the convolution is referred to as the
Point Spread Function (PSF) and it describes how a point source is smeared out
due to the optics. In Fourier space this convolution turns into a multiplication and
the Fourier transform of the PSF is called the Contrast Transfer Function (CTF)
(or optical transfer function).

We now take a closer look at the PSF relevant for TEM imaging. Let 5. denote
the scattered electron wave function leaving the specimen. The wave function tget
for the electron immediately before it reaches the detector can then be expressed as
[30]

Daet (€) = Dsc(€) exp(—ix(€)).

10
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In the above, zZSC and @det are the 2D Fourier transforms of s, and tqe; in the
plane orthogonal to the optical axis, respectively. Also,

_27r

X(€) 1= T (FONel — SAFNIER)

where C5 and spherical aberration and Af is the defocus value [35, 20].

2.4 Detector

After passing through the optics, the imaging electron hits the detector. The first
thing that happens is that an intensity is generated. All detectors are based on
measuring this intensity. A common detector type ha a scintillator crystal coupled
with a CCD camera. The scintillator trades the energy of the high energy imaging
electrons to photons detectable by a CCD. Such a detector introduces a dispersion
effect to the intensity which can be modelled with a 2D low pass filter in the detector
plane given by a convolution with kernel hget:

I(x) = ’deet(w)’2 &® hdet(x).

Note that the convolution ® above is a 2D convolution in the detector plane, the
latter almost always taken as orthogonal to the optical axis. The CCD camera
consists of a dense grid of sensors, each measuring the number of photons reached
to it from scintillator. This introduces two dimensional sampling of the out-coming
wave’s intensity. Note also that the detector adds noise to the measured signal.

11






Chapter 3

Electron-Specimen Model

The objective in this chapter is to arrive at the multislice approximation useful for
simulating electron-specimen interactions in TEM imaging.
3.1 The Schrodinger equation in the stationary setting

As already mentioned, the wave function ¥ of the scattered imaging electron fulfils
the scalar Schrédinger equation

2
ih%\li(:c,t) _ [—%W V(@) ¥(a,t)

where V is the object function given by the interaction Hamiltonian, V? denotes
the Laplacian in R3, and m is the relativistically corrected mass of the imaging
electron. Furthermore, the electron wave function is time harmonic and of the form

U(x,t) = y(x)exp(—iEt/h) where E is the total energy.

Now, the potential energy is negligible compared the kinetic energy of the imag-
ing electron, so the total energy E can be taken to be equal to the kinetic energy
of imaging electron. Hence, E = k?h?/2m where the wavenumber k := 27/\ de-
pends on the relativistically corrected wavelength A. We then arrive at the following
Helmholtz type of equation for 1:

2
Ey(z) = [—%W — eV (@) v(@). (3.1)
We will also make use of the scattering potential which is defined as
Ux) = =5 V(x) forxeR3. (3.2)
Then, (3.1) simplifies to
Fi(a) = =[V2 + U)]v(@). (3.3)

13
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Furthermore, we note that
1
ﬁ/U(a:jst)ds:a/V(m—st)ds

where o := 2mmMe/h? (with h = 27h), usually called the interaction parameter,
and k = 27 /X is the wave number of the electron () is the electron wavelength).

As a final note, the scattering potential U can also be extended to include
“absorption” by adding an imaginary part, so we will assume that U: R® — C. The
calculation of scattering potential from a specification of the specimen is taken care
of by the TEM-simulator [29].

3.2 Computational models for the electron-specimen
interaction

The wavelength of a 200 keV electron is 0.0025 nm. A straightforward numerical
sampling of this wavelength for solving the partial differential equation (3.1) would
require of order 10 points per wavelength. To sample a small specimen in a cube of
10 nm per side would require about (10 - 10/0.0025)3 ~ 6.4 - 10'3 points. Even in
single precision (four bytes per value) this would require 2.4 - 10° Gbytes of memory,
which is clearly not possible in the near future. Clearly some other approach must
be found.

There are two principle means of calculating the propagation of the electrons
through a specimen transmission, the Bloch wave method and the multislice method.

Bloch wave: The electron wave function is expanded in Bloch waves inside a crys-
talline specimen, which have the periodicity of the specimen and satisfy the
Schrodinger equation. Requires finding the Eigenvectors and values of a large
matrix. Good for small perfect crystals but the computer time scales as N3
where N is the number of Bloch waves or Fourier components (NN increases
with resolution).

Multislice: Divide the specimen into many thin slices. Alternately transmit and
propagate the slowly varying portion of the wave function through the spec-
imen. Will work on crystalline or nearly amorphous specimens. Using an
efficient Fourier transform, e.g. Fast Fourier Transform (FFT), the computer
time scales approximately as N log(N) where N is the number of Fourier
components (N increases with resolution).

The Bloch wave approach is described in several books, e.g., [5], and will not be
discussed in detail here since it only applies to crystalline specimens. The multislice
method was first described in [4] and later expanded in [13]. The FFT was first
added in [19] and [3] greatly improved the computational efficiency (reduces CPU
time) of the multislice method. The FFT based multislice method is presented
in [20] and will be discussed briefly below. See also [12] for simulation of general
objects by means of multislice.

14



3.3. THE MULTISLICE METHOD

3.3 The multislice method

The multislice method solves the above sampling problem by factoring the electron
wave function into a part that varies with the wavelength and a slowly varying
portion that is sampled in real space at a much larger sample spacing (because the
specimen has only a small effect on the scale of the electron wavelength).

Consider an electron traveling in the w-direction in R? (usually the directional
vector w is parallel to the optical axis of the TEM). Then, the corresponding
electron wave function ¥ can be written as

b(x) = ¢la) explika - w) (3.4)

where ¢ is the slowly varying portion of the wave function.

Insert (3.4) into (3.1) and solve for ¢, the slowly varying portion of the wave
function. Note here that the sampling of the slowly varying portion ¢ may be spaced
many wavelengths apart. This approximation is justified because the incident elec-
tron beam is a relatively high energy and is not changed significantly on the scale
of its wavelength. Back scattered waves are also neglected.

Another approximation in the multislice method is the actual slicing of the
specimen along the w-direction. The incident wave enters the specimen at the top,
propagates through the specimen and exits at the bottom. In TEM the incident
wave is a uniform plane wave traveling in the w-direction. The specimen is divided
into many slices, each of which is thin enough to be approximated as a simple phase
shift of the electron beam. The electron beam propagates between slices as a small
angle outgoing wave (Fresnel diffraction). The wave is transmitted through a slice
of thickness Az and then propagates a distance Az along w to the next layer.

With some mathematical manipulation, outlined in section 3.4, one can utilise
the fact that ¢ in (3.4) varies slowly, drop small terms as Az — 0, and arrive at
the following expression that is henceforth called the multi-slice equation:

Pa -+ Law) = TR (TEU)6) (@, ) (@) +0(2%) (3.5)

for £ € R? and Az > 0 small. The operators above are given as follows:

Transmission: T{2"[U](¢y) models the transmission of a electron wave function
: R?> — C through a specimen characterised by its scattering potential
U: R — C, see (3.2). The wave function v is transmitted the distance
Az from x to x + Azw through a specimen along the w-direction by means
of a phase shift given by a projection of U:

Nz

TAAST](p) (w, ) = ¢(x + Azw) exp [2114: ; U(x + tw) dt|. (3.6)

Propagation: TX?Op(w) models the free-space propagation of a wave function v: R3
C for a distance Az. If Az is small enough, the propagated wave can be ap-

15
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proximated through Fresnel diffraction along the w-direction (section 3.4.1):

ToR(B)(@) = { Pun: ® ¥} (@) (3.7)
with
k k
Pw’Az(m) = 2r\z eXp(i2A2|ﬂE — (- w)w|2).

Now, let ¢, denote the wave function from (3.4) restricted to the n:th slice with
thickness Az, wt + nAzw, ie.

On(x) = d(x + nhzw) for x € wt.

Then, the multi-slice equation (3.5) can be written recursively as

gf)o(ﬁc) =1
{¢n+l<w> S (TG, )@ reewt Y

In the above, we have used the convention that w™ is the plane orthogonal to w just
before the specimen, so ¢¢ will be the incoming plane wave used for illumination
and

do(x) = exp(ikx - w) =exp(0) =1 for all z € wt.

3.4 Deriving the multi-slice equation

3.4.1 Electrons that mainly propagate along a fixed direction

We here consider the case of high energy imaging electrons that propagate along a
“main” direction, which we without loss of generality can set to the z-axis. To be
more precise, the idea here is that fast oscillations are mainly along the z-direction.
In such case it is natural to write

b(x) = (a) exp(ik=) (3.9)

and ¢ above is slowly varying along z-axis. The extreme case is a plane wave
propagating along the z-axis, which corresponds to ¢ = 1.
Inserting (3.9) into (3.3) gives us

— V24 U(z)]gp(x) = 2ik§2¢(zc). (3.10)

16
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The above follows from

V)=V - {V(gbexp(ik:z))] =V - [exp(z’kz)(giez + gjey>

+ (zk exp(ikz)p(x) + exp(ikz)gf)ez}

: Po 09
= exp(ikz) (W + @)
2
— k2 exp(ikz)$ + 2ik exp(ikz)g—i5 + exp(ikz)%
= exp(ikz) [vqu — k¢ + Qikg(g

where e, := (1,0,0),e, := (0,1,0), and e, = (0,0,1) denote the Cartesian unit
vectors. Next, split the Laplacian V? into a z-directional and a transversal part:

0?2 0?2 82
Vi=V3+ 9.2 where V3 = 922 8y (3.11)
and use in (3.10):
V4 U@)6(@) = 2k () + 2 (a) (3.12)
L 0z 022 '

This far we have not made any approximations, i.e, mathematically (3.3) and
(3.12) are equivalent. Our next step is however based on assuming that ¢ varies
slowly as compared to k in the sense that

.0
]mka— z)| > ‘a 50()| (3.13)
Then (3.12) can be simplified into

., 0
— [V +U(x)]¢(x) ~ 2ik (). (3.14)
Note that this equation looks exactly like the time-dependent Schrédinger equation
with ¢ substituted with z. There are different rationales for motivating the omission
of the 8?¢/dz%-term in (3.12) and how this is to be interpreted from a physics point-

of-view [18, 25, 23, 2].

3.4.2 Free space propagation

The aim of this section is to arrive at an analytical form for wave function of
electrons with constant energy given the boundary value on a plane orthogonal to
the z-axis. For this purpose we first solve (3.14) for a plane wave with a fixed energy
and then show how we can arrive at the case with general boundary condition using
superposition of some of these plane waves. This refers to the propagation of the
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CHAPTER 3. ELECTRON-SPECIMEN MODEL

electron wave in free space, i.e., we seek to solve (3.3) for U = 0. From (3.14) we

get

— V2 p(x) = 22'1@%@1)(93). (3.15)

As in time-dependent Schrodinger equation, in order to solve this equation for a
plane wave, we split ¢ into a transversal and a z-directional part:

o(x) = exp(ik’ - =')exp(iklz) where ' = (x,y). (3.16)

Note that wave numbers of ¢ are noted with a prime to be distinguishable with
those of 9. Splitting ¢ in this form gives a solution which its uniqueness is justified
with Sommerfeld radiation condition [31].

Substituting (3.16) into the left-hand-side of (3.15) gives us

~V3i¢(x) =~V - V]exp(ik' - ') exp(ik,z)]
=-V - [z'(k;ez + kyey) exp(ik’ - x') exp(ik’zz)}
= (K7 + k) exp(ik’ - @) exp(iklz) = |K'[*¢(z).

Similarly, the right-hand-side of (3.15) gives us

2ik§¢5(w) = 2ik(ik.) exp(ik’ - ') exp(ik.z) = —2kk.¢(x).
2

Hence,
K'|?
K 2p(x) = —2kk.p(x) — —|K/|> =2kk, — k. = —|2k.
Inserting this value for &, into (3.16) gives us the solution
K'|?
o(x, 2) = exp(ik’ - ') exp(—i‘zk[ z) (3.17)

As a final note, let us consider (3.13). Its left-hand-side is

0
2ik5o(@)| = |-2kk.o(@)| = 2k[KL|6(2)
and its right-hand-side is
o 2 2
|5z0@)|= (k) *6(@)| = K.P[é ().
Hence, (3.13) reads as
2k|KL||p(x)| > K12 p(x)| <= 2k > K| <= 4k* > |K/|°.

The last equivalent formulation above comes from using k. = —|k’|?/2k. Now, k
just represents the total energy of the particle. The kinetic energy and direction of
propagation can vary with very small amounts and angles. We see that 4k% > |k/|?
is required for propagation direction to be close to the z-direction.
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3.4. DERIVING THE MULTI-SLICE EQUATION

General case: Equation (3.14) and (3.10) are linear in terms of ¢. Hence, let ¢;
and ¢ be two solutions under two different boundary conditions ¢? and ¢5. Then,
the solution under the boundary condition aqzﬁ'f + Bqﬁ}f is a1 + Bpo. This statement
could be restated in terms of the linear operator Aa, which maps a function ¢;, on
the (', zp)-plane to a function ¢oy on the (x', zg + Az)-plane in which

Pout (') 1= B(x', 20 + Az),

so both input and output of this system are two dimensional functions of ’. Hence,
AAZ <¢in) (wl) = ¢in($,>

From (3.17) we can conclude that if ¢ is a plane wave then ¢i, and ¢oy contain
only one frequency in x’-plane which is € = k’/27, and we can write:

|&'|?
2k

Gout () = dun (@) exp (it -Az) (3.18)

This equation introduces a single frequency analysis for operator Aa, in the sense
that

|&'|?
2k
is the frequency response (also known as transfer function) at the frequency & =
k' /2m. Substituting this value for £ we can rewrite the frequency response as:

K — exp(—i Az)

H(¢) = exp(—i’zﬂzﬂzAz) (3.19)
Generally ¢, and ¢ou could be expressed through the Fourier transform:
on(@) = [[ ®in(§) explizne - o) d (3.20)
Gou(@) = [[ ®our(&) expliznt - ')t (3.21)
where
By (£) = / / din(2) exp(—i2na - €)da’ (3.22)
@0ut(§) = [[ bous(@!) exp(~i2na’ - ) da. (3.23)

Knowing the frequency response, we can write the relationship between &y, and
Dt as:

Dot (€) = Pin(€)H (E). (3.24)
We can now explicitly calculate the inverse Fourier transform of H:

/|2

v k ik|x
N —
H(@) = 12mAz exp( 2Az )
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CHAPTER 3. ELECTRON-SPECIMEN MODEL

Thus, (3.24) can be restated in real space as a 2D-convolution:

Pout (') = iQ:Az {¢in ® eXp(i@A';) }(az').

In summary, slowly varying part ¢ of the electron wave v is, after propagating a
distance Az in free space, given as

o' 2+ Az) ={d( - ,2) @ Pa,}(z) (3.25)
where " L
Pa. (') = oA exp(iQAZ]:c'F).

This convolution is called Fresnel diffraction and P is often called Fresnel propaga-
tor. Also, the above expression for ¢ at the (', 2 + Az)-plane is the same as the
one given by TP in (3.7) for the case when w = (0,0,1).

3.4.3 The multislice equation

The material here is based on section 6.4 in [20]. The starting point is to write
(3.14) in operator form:

% (@) = [A+ B@))(6)(x)
where
AD)(-) = 32300+ ) and B@)(@)( - )= 5 U@)6( - ).

Next, one can express the solution of (3.14) as

o(x) = exp {/OZ A+ B(x', s) ds} (¢)(z',0) (3.26)

where the above exponential of an operator is defined in terms of a formal series
expansion. Offsetting the initial value to z gives us

ola' 2 + Az) = exp| / T AL B ) as] (o). ).

or equivalently

z+Az ;
o', 2+ Az) :exp[/ ! LV2l+ ;ka(a;”g)ds} (¢)(2', 2)

z4+Az
2k J.

(3.27)
U(a',s)ds| (¢) (@', 2).
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3.4. DERIVING THE MULTI-SLICE EQUATION

It can now be shown, see [20, p. 133], that the operator in the right-hand-side of
(3.26) can be written as a composition of two operators:

exp [/:+Az A+ B(x', s) ds}
= exp [/Z+Az .Ads} o exp {/HAZ B(x',s) ds} +0(A2?%). (3.28)

In the above, the error of the approximation is of order Az? and goes to zero faster
than the first term, hence this guarantees the convergence of the approximation
when Az — 0. Note also that the two terms in the right-hand-side above can be
exchanged, but since the operators A and B(x) do not commute, this would result
in a different approximation.

We now start by deriving the expression for exp { Iz tAz Ads}. When it acts on
¢, it results in the formal solution to the differential equation

09

2 = A©)

This equation is identical to (3.15) and its solution is given by (3.25), i.e.,

p(x',Az) ={Pr, @ ¢( - ,2)}(z)

where

k k
PAZ(w/) - 12 Az exp(z 2Az’wl,2)'

In summary, we have that
z+Az 4

expl [ Aas] (@) = e[ [T Lvias] @) = Pacoo( 2 (329

Next, we want to calculate exp {f;JFAZ B(x',s) ds]. Inserting the definition of B

and using the expression for U in (3.3) gives us

exp [/HAZ B(x', s) ds] = exp{i /HAZ Uz, s) ds}

; z+Az
= exp{%/ V(z',s) ds] = explioVa.(z', 2)]
where A \
ez me  2mme
Va.(2',2) == /z V(z',s)ds and o := E e

In summary, we have that

z+Az

exp| / B(@',5) ds|(¢)(@) = ¢(@) explioVa.(a', 2)] (3.30)
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Thus, the final expression for (3.27) is obtained by substituting (3.30) and (3.29)
into (3.28):

exp {/:+AZA+B(:B,’S) ds} ~ [Pp,®] o [exp(wVAz(az’,z))}

when Az is very small. The multi-slice equation (3.5) now follows from inserting
the above into (3.27).
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Chapter 4

Implementation

The multislice method outlined in section 3.4.3 is implemented in the software pack-
age TEM-simulator [29]. This chapter describes the implementation and integration
of the multislice method into the TEM-simulator software suite.

4.1 The parts of the TEM-simulator

From a functionality viewpoint, the software components that make up the TEM-
simulator can be grouped into two major components:

1. Phantom generator: Software allowing the user to generate a synthetic spec-
imen (mathematical phantom) that can be used by the TEM simulator in
order to generate a synthetic image.

2. TEM simulator: Software allowing the user to simulate TEM imaging of the
phantom.

4.1.1 Phantom generator

A phantom generator allows a user to specify which specimen that is to be modelled
and then to assemble a model of the specimen that can be used in simulating TEM
images. In TEM-simulator, a biological specimen is specified through the following
three parts:

1. Particles: This is a specification of the molecules (or molecular assemblies)
that will be embedded in the background. Each particle is specified at atomic
level by a single file in the RCSB Protein Data Bank (PDB) format.

2. Background: This is the specification of the background environment encap-
sulating the particles. The background is modelled as a continuum medium
and is assumed to be a slab of aqueous buffer with flat or curved surfaces.
The scattering potential for the background is calculated using an averaging
procedure, so it is constant.
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3. Particle distribution: For each particle, one must provide a specification of
its “distribution” in the specimen, i.e., how it is to be distributed in the
background environment. It can either be randomly placed in a manner that
corresponds to a given concentration, or it can be placed following a specific
distribution.

Given the above, the phantom generator will create a mathematical model of a
specimen relevant for TEM imaging. This is equivalent to generating the scattering
potential U (see (3.2)) of the entire specimen given a specification of the background,
particles, and the distribution of the particles in the background. This involves
difficulties such as how to fuse the scattering potentials of the particles with that
of the background, how to model the natural granularity of the background, and at
what resolution (in terms of sampling) to represent the phantom. How these issues
are handled is described in [29)].

Figure 4.1. A particle stored in a three dimensional array.

4.1.2 TEM simulator

TEM simulator starts with a plane wave representing the wave function of electrons
leaving the condenser. It induces the interaction effect of the specimen’s electro-
static potential on the wave function by means of linear or multislice method de-
scribed in section 3.3. It then applies the linear influence of the lens and partial
incoherence due to incoherent illumination. The wave function then takes the effect
of the detector and its intensity is calculated and noise is added. The intensity
received by each element on the detector’s matrix represents the pixelized digital
image which is saved on an MRC file.
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4.2 Steps of the multislice method

In the multislice method, the specimen is first sub-divided into thin slabs of thickness
Az. The two parallel hyperplanes that demarcate each slab are orthogonal to the
propagation of the incident electron. Next, for each slab the wave at the upper slab
is first phase shifted by an amount proportional to the projection of the scattering
potential (transmission), and then it is propagated a distance of Az to the lower
slab (propagation). This is expressed by formulas in (3.8).

4.2.1 Wave function

The wave function basically is a two dimensional array that holds the complex
numbers that represent the values of the sampled wave function traveling through
different components of electron microscope. Its pixel size is equal to pixel size
of the detector divided by magnification, and its size is the same as that of the
detector; considering that wave function is to be sampled by the detector, therefore
the best sampling rate for the wave function is the one matching the detector’s pixel
size.

4.2.2 Generating slices

Following the representation of a specimen in the TEM-simulator, its scattering
potential is given by

V(x) = Z Z V;J((w — Tgyr) RCIJ“)' (4.1)

q:l T

In the above, m is the number of the particle types, x,, is the position of the
r-th copy of the g-th particle, and R, , is the 3 x 3-transformation matrix of that
particle associated with its orientation, and V,(x) is the scattering potential of g-th
particle at @. Its origin is the center of the particle and it is zero outside the range
of electrostatic potential of the molecule.

For creating slices, there is a block of memory allocated representing a three
dimensional slice. Its length, width and voxel size are determined by the detector’s
dimension and pixel size just like wave function. The thickness (size along the beam
direction) of this box depends on the slice thickness which is determined by user.
In each step of multislice method, a slice of specimen is generated and stored in this
block of memory.

Having the orientation and position of all particles in a table, the software fills
in the voxels of the slice with the complex values of the electro statistic potential of
space inside the slice. Trilinear interpolation is used to derive the potential of the
voxels from the slice which are falling inside a particle. Figure 4.2 roughly shows
how the voxels of a particle is positioned relative to the voxels of slice. The rest of
the voxels either equal to potential of buffer (4.877 +i0.824 V) if they exist inside
the buffer or zero if they do not. Geometry of buffer is shown in the figure 4.3.
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Figure 4.2. Tri-linear interpolation is used to calculate the voxel values of one slice
(black dots) from the known voxel values of a particle existing inside the slice (red
dots).

4.2.3 Propagation

Propagation is the numerical implementation of Fresnel diffraction of the wave func-
tion along the beam direction. Hence we need to calculate the convolution between
the wave function and the Fresnel propagator,

' 1 T2
(x',2) — AL exp(AAz\a: | )

The convolution changes into a multiplication in the Fourier space. To calculate
this multiplication in the discrete Fourier space, FFT is used to take the discrete
wave function to the Fourier space. For the propagator though, sampling is ap-
plied to the analytically Fourier-transformed of the Fresnel propagator 3.19. The
frequency components of the propagator that correspond to higher frequencies than
the wave function’s Nyquist frequency (half of the sampling rate), are canceled out
in the multiplication; hence no aliasing effect due to under-sampling will occur; un-
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Figure 4.3. Buffer’s geometry. R = 5

like the case where we want to calculate the convolution directly in the discrete real
space. In the end, the product is transformed back to the real space using inverse
FFT.

In conclusion, what is done here is a simple multiplication of the Discrete Fourier
Transform (DFT) transformed of the wave function by sampled data of the function
1

(€1,62) = exp[—i2m?2(€7 + €3) /K]

and ultimately DFT inverse transform the result.
U (i,§) i= DET H{DFT{} }Top (exp[-i2n?2(¢] + &) /K])  (4.2)

Top is two dimensional sampling with the same sampling frequency equal to that
of the wave function 1.

4.2.4 Transmission

In this step the projection of the slice is calculated along the z axis?. This projection
is a simple summation of voxels that stand contiguous along the z axis. The wave

!This sampled data should be arranged somehow to follow the DFT’s frequency pattern where
the lowest frequencies are in the corners and the highest are in the middle of the image.

2In the Simulation in every tilt mode, the propagation axis remains constant and the specimen
is rotated respectively.
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function is then phase-shifted in the corresponding pixels based on the equation 3.30:

Un (i, §) ==L (i, §) expliopp Y V (i, j, k)) (4.3)

k

where 1), is the wave function after transmission and v} is the wave function after
propagation. V' is discretized scattering potential of the slice and u, is its voxel
size.

4.2.5 Optics and Detectors

After sequential propagation and transmission for all of the slices, we apply CTF
effect. The true defocus value is determined by adding the nominal defocus given
by the user and the level where outgoing wave function exists the specimen which
is equal to half of the specimen’s thickness 3. In the next step the intensity of the
wave is measured and noise is added in the detector and its written on an MRC file.
In these steps the original methods and functions in TEM-Simulator 1.3 are used.

4.3 Modifications in TEM-Simulator

The multislice method is integrated in the new release of TEM-Simulator (version
1.4). User can select between three different options of electron-specimen model.
With multislice being selected as the model of interaction, the slice thickness can
be set to a value which determines the precision of the model.

List of modified files:

TEM-simulator.c; The main function exists in this file which handles input man-
agement. This file is modified to view the documentation of the added features by
executing "TEM-simulator -help’.

simulation.c; it contains the main algorithm of the whole simulation and controls
the mode of interaction which is modified to be able to navigate between different
modes.

multislice.c is added and it contains the functions necessary for calculating the
slice, projection, and propagation as well as the function that performs the algo-
rithm of multislice method.

3In the "projection" mode this addition to defocus value is not needed.

28



4.3. MODIFICATIONS IN TEM-SIMULATOR

Plane wave

Projection

<l

Phantom generator
(particles' potential map)

Phase-shift
the wave

~———

Slices are

(
ﬁm

f A

lice projection w

finished

Electron-specimen
interaction mode

Y Multislice

A

Propagarion

Y

Optics

A

<
<t

Slice generator

Write on file

(Apply CTF)

Detector:
intensity calc
transfer func.
add noise

Write on file

Particle-sets

information

Figure 4.4. Flowchart of the program in multislice or projection mode.
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Chapter 5

Results

Here we summarise the results from tests of implemented multislice method using
TEM simulator.For the test we used an in vitro sample containing Ribonucleic
Acid (RNA) polymerase particles and spherical gold particles. The RNA polymerase
is a molecular complex that is fairly well characterised from structural point of view
(figure 5.2(a)) and figure 5.1 shows this molecular complex in different orientations.

Figure 5.1. RNA polymerase with random orientations

To test the propagation part of the multislice method, two pairs of identical
particles are placed at different levels along the propagation axis. The relative
positions of the particles are shown in figure 5.2(b) . We should be able to set
the focus on both levels. This test confirms that the propagation in the multislice
method is consistent with the optic point spread effect due to defocus. The results
of this test is shown in figure 5.3. In figure 5.3(a) focus is on the right side particles
which means the left side particles are over-focused. In this image we can see the
focused particles with higher detail but lower contrast. In figure 5.3(b), defocus
is set somehow that left particles are in-focus and right side particles are under-
focused, consequently. we can clearly observe the difference between over-focus and
under-focus effects in these images which is consistent with CTF transform function
with defocus values greater and lower than zero.
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(a) The RNA polymerase particle. (b) Positions of the RNA polymerase and
gold particles.

Figure 5.2. Specimen consists of two pairs of identical RNA polymerase and gold
particles. The RNA polymerase is shown in figure (a). The placement of the RNA
polymerase and gold particles are at different levels along the propagation axis, see
figure (b).

In the next test we are comparing the projection approximation with multislice.
The same particles with the same positions are used. The defocus value is zero. one
time the interaction mode is set to multisice and another time it is set to projection
mode. Figure 5.4(a) is obtained in multisice mode. We can see that one pair of
particles are under-focused and the other pair are over-focused while in Figure 5.4(b)
where the mode is projection, there is no difference between particles in the image
although they are at different levels.

In the next test we form a complete specimen by particles with random positions
and orientations and buffer with thickness variation, with and without noise in the
detector.
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(a) Particles in the right side are in focus, the (b) Particles in the right side are in focus,
ones in the left side are 630 nm over-focused. the ones in the left side are 630 nm under-
focused.

Figure 5.3. Examples of comparisons of images at 630 nm under-focus (a) and
over-focus (b) against corresponding images taken in focus.

(a) Multislice mode. (b) Projection mode.
Figure 5.4. Comparison of images simulated using multislice and projection. Images

simulate TEM imaging at zero defocus. Multislice mode is shown in (a) and projection
mode is shown in (b).
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(a) Noise-free TEM image.

(b) TEM image with noise.

Figure 5.5. TEM image of a specimen with RNA polymerase particles taken at
3 pm under-focus.
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